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SUMMARY

An analysis is made of the influence that radiation exchanges be-
tween elements on the inside surface of a tube have on the wall and gas
temperature distributions for forced-convection flow. The wall heat
generation has a chopped sine distribution with length along the tube,
which is a distribution often encountered in nuclear-reactor channels.
The flowing gas is assumed transparent to thermal radiation and hence
does not participate directly in the radiative exchange process. Axial
heat conduction is neglected in the gas and tube wall, and the
convective-heat-transfer coefficient and fluid properties are assumed
constant. Several numerical examples are given to illustrate the ef-
fects of eight independent parameters such as wall emissivity, Stanton
mumber, and length-diameter ratio. In some instances the radiation ex-
changes reduced the peak wall temperature or caused a reduction in the
exit gas temperature because of radiation losses from the tube end
openings.

INTRODUCTION

In advanced types of powerplants it is desirable to increase the
operating temperature levels to achieve higher efficiencies. With
higher surface temperatures, heat exchange by radiation is more signifi-
cant and can become coupled with conduction and convection processes.
This report is concerned with combined radiative and convective heat
transfer for flow of a transparent gas in a tube.

The first interest in this situation was shown by Hottel (ref. 1),
who derived the energy balances for combined radiation and convection
in a uniformly heated black tube.. The energy balance on an element of
the tube wall resulted in a nonlinear integral equation, while the gas
temperature was governed by a first-order linear differential equation.



In reference 1, one numerical solution was obtained for = short tube by
dividing the tube length into several isothermal zones and writing a
heat balance for each region. This gave a set of nonlinear equations
that were solved for an average temperature in each zone. This analysis
was continued in reference 2 where the governing integral equation was
transformed into a differential equation by using an approximate sepa-
rable kernel. Numerical examples were then carried out to examine in
detail the influence of the several independent parameters. In refer-
ence 5 a uniformly heated gray tube was analyzed by using the net radia-
tion method (ref. 4, pp. 21-24) combined with the procedures utilized

in reference 2.

The present report extends the previous analyses to include arbi-
trary variations in wall heat flux along the tube length. The analysis
1s carried out for an arbitrary axial heat flux variation and is then
specialized for a chopped sinusoidal distribution that is often encoun-
tered in nuclear-reactor passages. The gas flowing in the tube is as-
sumed transparent to radiation so that radiant exchanges occur only be-
tween elements of the internal tube surface that are at different tem-
Peratures, and between the internal tube surface and the environment
outside each end of the tube. When internal radiation exchanges within
the tube are appreciable, the local heat convection to the gas 1s no
longer equal to the local heat generation supplied to the wall but is
equal to this heating plus the net radiative gain. Throughout the analy-
sis the convective-heat-transfer coefficient between the wall and gas is
assumed constant, and this assumption will be discussed later. The out-
side surface of the tube is assumed perfectly insulated and, hence, has
no heat exchange from it. The equivalent of this condition can occur
when the flow channel is surrounded by other channels that are similarly
heated. For example, in a reactor fuel element constructed of an array
of stacked parallel plates with flow between them, half the energy from
each plate is transferred into the channel on each side. From symmetry,
the temperature derivative is zero at the center of each plate thickness,
which corresponds to an insulated boundary condition.

In the next section the energy equations will be derived for an
arbitrary variation in wall heating with axial position. The equations
will then be reduced to a set of two simultaneous differential equations
that can be solved by standard numerical forward integration methods.

ANALYSIS

The circular tube under consideration is shown in figure 1. The
heat imposed at or generated in the tube wall is supplied either by some
external means such as electrical heating or by nuclear fission of fuel
contained in the wall. The heat input can vary in an arbitrary manner



along the tube length and is given by q(X). The integrated average
heat addition is given by the definition

L
1=z Jér a(X)ax (1)

Each end of the tube is exposed to a reservoir or outside environ-
ment that is maintained at a given temperature. At the inlet end of the
tube this temperature is Tr,i’ and at the exit it is Tr,e' The gas
flowing through the tube enters at temperature T, 5 and leaves at
Tg,e' The gas is assumed transparent to thermal radiation so that it
does not participate directly in the radiative exchange. This is a
reasonable assumption for gases such as hydrogen, OXygen, and nitrogen.
This assumption is also valid for radiating gases when the densities and
path lengths (i.e., optical thicknesses) are small so that the gaseous
radiation is small compared with the radiative exchanges between the
solid boundaries. The inside surface of the tube wall is assumed to be
diffuse and gray so that the emissivity € 1is independent of wavelength
and is equal to the absorptivity. In addition, € igs assumed independent
of temperature so that it is constant throughout the tube. As will be
shown later, for long tubes the results are generally insensitive to the
value of €, so this is not a very restricting assumption. The
convective-heat-transfer coefficient between the wall and gas is assumed
constant throughout the tube. This causes an error in the thermal en-
trance length where the heat-transfer coefficient is higher than in the
fully developed region. For turbulent flow the thermal entrance lengths
for gases are fairly short, on the order of 10 dismeters, so this assump-
tion becomes less important when long tubes on the order of 50 to 100
diameters are under consideration. The variation of heat flux along the
tube length alsoc has an influence on the heat-transfer coefficient, but
is a relatively minor effect for turbulent conditions.

Energy Balance

The energy balance is derived in the same manner as in reference 3
where a uniformly heated gray tube was considered. According to Poljak's
net radistion method (ref. 4), q, and gq; are the rates of outgoing
and incoming energy for the surface resulting only from the radiative
processes. At any location along the tube wall the energy supplied to
the wall is q + q;, where @ is the specified external heat addition
or heat generation in the tube wall. The energy leaving the wall because
of radiation and convection 1s q5 + h(Tw - Tg)' This gives the heat
balance

a(x) + q;(x) = ag(x) + n[T,(x) - T, (x)] (2)



where the coordinate x has been nondimensionalized in terms of the
tube diameter. The outside surface of the tube is assumed perfectly
insulated and hence does not provide any additional terms in the heat
balance.

Expressions for q; and g, are needed so that these quantities

can be eliminated in terms of the desired wall and gas temperatures.

The incoming radiation gq; at a given x location is composed of radi-
ation coming from surface elements at other positions ¢ along the tube
and from the reservoirs at the inlet and exit ends. This gives the
relation

1
o =f G (8)K(|x - £])ag + o7 F(x) + off F(1 - x) (3)
0

The integral is the energy contribution that the outgoing radiation
qo(&) from all the other surface elements makes to the element at x.
The q, at ¢ has to be multiplied by the geometrical configuration

factor K(|x - gL)dg to give the amount of radiant energy leaving a
ring area element at ¢ that reaches x. This factor is given by

% - &5+ 2 |x - g

(G- 002+ 17"

K(|x - ¢])ae =<1 - at (4)

The two other terms on the right side of equation (3) are the heat loads
coming from the inlet and outlet enviromments at the ends of the tube.

Each enviromment is represented by a black plane at the end of the tube
that assumes the radiation coming through each end opening is diffusely
and uniformly distributed over the end opening. The quantity F is the
geometrical configuration factor between a ring element of differential
length on the tube wall and the circular opening at the end of the tube;
F 1is Dbased on the area of the element on the tube wall and is given by

2+ 2

F(X)='("X2_+—l—)—]7§-x x 20 (5)

In equation (2) the outgoing radiation gqy from a surface is made
up of directly emitted radiation plus the amount of incoming radiation
that is reflected:

4
qg = €oT, + 0q; (8)



Since the surface is opaque, the reflectivity p 1is equal to one minus
the absorptivity, which, with the gray assumption, becomes 1 - €. Then

q, = eUTi + (1 - e)qy (6a)

Since the three equations (egs. (2), (3), and (6a)) contain four
unknowns - ds, 435 Ty and T, an additional relation is required.
This is found from a heat balance on the flowing gas. The gas is assumed
transparent to thermal radiation so it exchanges heat with the wall only
by convection. If a cylindrical control volume in the gas of diameter
D and differential length d4dX 1is considered, the convected energy

2

flowing into the volume 1is 1%— EbcpTg, while that convected out 1is

2

2
7D 4 [#D" —
7 uPcplg * Ex‘(z; upeply |dX

The energy convected to the gas from the wall is D ax h(Ty - Tg). The
energy balance on the gas is then

—& = st(Ty - Tg) (7)

where x = X/D and St 1s the Stanton number 4h/ﬁbcp.

Since equations (2), (3), (6a), and (7) are to be solved for Ty
and Tg, Qi, which is not of physical interest, must be eliminated first.
Substituting equation (3) into (2) gives

1
a(x) + / a (£)K(|x - £])as + oTf jF(x) + off F(1 - x)
0

- gg(x) + a0 - 7] (®)

Equations (2) and (6a) can also be combined to eliminate qj:

g = ot + 22ER(T, - ) - a(x)] (9)

€

Equations (7), (8), and (9) then constitute a set of three equations for
three unknowns - qg, Ty, and Tg. Before proceeding with the solution,
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the equations are placed in dimensionless form:

g;-g- = st[tw(X) - tg(X)] (7a)
1
2 o 2 ok(fx - gPas + el 0+ 1f (- o)
1 A
o (x)

+ HEtw(x) - tg(x)] (8a)

ER A =

Separable Kernel Approximation

The integral equation (8a) is complicated by the fact that the
kernel K(]x - &|) is not & simple algebraic function. Tt is shown in
references 5 and 6 that a good approximation for K is

K

K(x - &) e~2(x-8) x>t
(10)

e-2(§—x) x < &

iR

K(¢ - x)

The use of this exponentisl zpproximation provides a great simplification

: -2(x-t) _ _-2x.2¢ . . .
since e = e e 1s a separable function, that is, a product
of a function of x alone and a function of £ alone. This approxima-
tion is introduced into equation (8a) to give

X l
qx) , 1 %(¢) e28 qp 4 o2X Bole) “28 g
3 elX q © q ¢ :
0 X
4 4 %o (x)
by g F(x) + 6. F(1 - x) = 5 + H[tw(x) - tg(X)] (11)

Hence, by using equation (10) the x function in K can be taken out
from under the integral signs.



Reduction to differential equation. - Equation (11) can now be sim-
plified by transforming i1t into a differential equation. It is first
differentiated twice to give

X 1
2 (&) (e) a5 (%)
-E—L% + —;— qo_ e2t qe + 4e2% Bor7 -8 gp -4 2
q ecX q q
0 X
2 2 2
4 d°r(x) 4 a%r(1 - x) 1 d%q,(x) d%ty, 47ty
*tri T3 tr,e 2 == s— t 0o T3
dx dx q dx dx dx
(12)

Equation (11) is subtracted from this equation four times to remove the
integrals and give

2 P P
éé.é_% - 4q) + tﬁ ; E_Eézl - aF(x)| + tﬁ . é_Eilé:_El - 4F(1 - x)
q \dx ’ dx 4 dx

€ + 4t (13)

The quantity q, 1s then eliminated by differentiating equation (9a)
twice and substituting into equation (13):

2 2 2wl
Lrda 4y +t4.——dF(x)-4F(x) Lot ARG - x) X)-zm(z-x)
q [ dXZ 1",1 dxz I‘,e dXZ




This is further simplified by eliminating d%t /dx2 Thus, equation (7a)

is differentiated to give
2
d°t dt,, dt
€ _ o[ ¥ _ 8
dxz dx  ~ dx

and equation (7a) is substituted into this to remove dtg/dx:

a%t, at., »
—F - Stigy - Stlty - tg) (15)

Equation (15) is used to eliminate the second derivative of tg in
equation (14) with the result:

2 .2
Lida +t4.w_4p(x)
q€dX2 r,i dx2
- 2 2
2 dt a~t
+ 5 d—F(Z—'—’ﬁ-w(z-x) = 1268 —2] 4 413 ¥
r,e axe widx W 348
2
d“t
1 W St W
+Hdez --e—[dx -St(tw—tg):]—4tw+4tg (18)

Equations (16) and (7a) are a set of two simultaneous nonlinear
ordinary differential equations for t,;, and tg. Before solving them
numerically, an additional simplification can be made by using an ap-
proximation for F similar to the one that was made for K. It is
shown in reference 5 that F(x) could be approximated quite well by the
function

-2x

F(x) = 5

(17)

2
By using this function, the quantity (g;g - 4%) = 0, and equation (18)
can be rearranged into the final form:



4%t at

2
dt
W 3 2({Shw) w [ 2 ]
> (4etw + H) + 12<-:1-,w<——i ) StH — + tH|(5t)° - 4¢

dx

- tgﬁ[(St)z - 4e] + —%-(Z—i% - 46(1) (18)

Boundary conditions. - Equations (7a) and (18) are to be solved
simultaneously for t,(x) and t_(x). For a first-order equation such
ag equation (7a) one boundary condition is required - the specified gas
temperature entering the tube at x = 0. This gas temperature tg(O)
is designated by tg,i'

For the second-order equation (18) the boundary conditions are de-
rived from the integral equation since the integral equation has the
boundary conditions already contained within it. One of the two condi-
tions required is found by evaluating the integral equation (11) at
x = 1 and using equation (17) to approximate F:

a(l) , 1 L) 2t g erZl
q +;ﬁ q_ e dé +tl",i >
0
tr o Goll)
e - a0 - tg(1)]  (19)

The outgoing radiation g, 1s eliminated by substituting equation (9a),
and the result is rearranged into the form

>

et
HE;W(Z) - tg(l)] + etd(1) - —2&3

ot

2
- / [ty + (1 - e)B(t,, - tg)]e_z(z_x) ax = 3%__1—)
0

1
+ eti i e'227' - (1~ €) f g-(ai)- e=2(1-%) ax (20)
0
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The second boundary condition for equation (18) is found by evalu-
ating the integral equation (11) at x = O and using equation (17) to
approximate T

a(0) 68 Yoi . 2l ag(0)
=+ —— e fag v = e td S - = + H[t,(0) - £,4(0]]

(21)

To begin a numerical integration of equation (18), two initial conditions
are needed - %, and dtw/dx at x = C. For each trial solution a value
for t,, will be guessed. This guess temporarily takes the place of the
boundary condition given by equation (20), which can only be tested after
a solution has been found. The value for dtw/dxfx=o will be obtained

by use of the condition given by equation (21). To do this the exponen-
tial approximation (eq. (17)) for F is inserted into equation (11)
which is then differentiated once and evaluated at x = O:

q, (&)
Lda 2L o2t gp - ¢4
quO q I',l
0
bpd emel L 3of (A dtg (22)
r,e g dx 0 dx 0 dx 0

The integral in this relation is eliminated by using the boundary condi-
tion in equation (21) to give

d
1 ldg 1 {99 4
—|==| - 2q(0)| - =|=—| - 2q,(0)| - 2t
q [dx 0 } q [dX 0 qO r,1l
at., at,
= Hig— 2t (0) - = * Ztg(o) (23)
0 0
- dg, - . .
The quantities q,(0) and = are eliminated by using equation (9a)
0

dtg

and its first derivative; the derivative —= is eliminated by using

0
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equation (7a). The result can then be arranged into the final form for
the initial wall temperature derivative:

dt
o du(se + 2)[e,00) - 5,(0)]

0 4et3(0) +H
+ ZeEcé(O) -2 ] + %_[d_q
W r,i g [dx

This condition along with a guessed value for t.,(0), a specified tg(O),
heat flux distribution, and other parameters provides sufficient condi-
tions to numerically integrate eguaticns (18) and (72) simultaneously.
The results for each trial tw(O) are tested in the boundary conditiocn
(eq. (20)); and, if this is not satisfied, a new value for t,(0) is
interpolated. The details of the numerical solution procedure for this
type of simultaneous system are discussed in reference 3.

Overall Heat Balance
In addition to having each solution satisfy the required boundary
conditions, a check on the numerical work was made by determining
whether the solution was consistent with an overall heat balance. The
heat balance was derived from the following terms:

(1) The heat removed from the tube by the heated gas, which is

ﬁDZ
Gecp 5 (Tg,e = Tg,1)

(2) The radiated heat leaving the tube wall that is removed through
the ends of the tube, which is

L

o o #(2) + 2252

(3) The heat gained by radiation into the tube from the enviromment
at the ends, which is

0



(4) The heat flux supplied at the tube wall, which is qnDL

The energy leaving the tube is equated to the incoming gquantities,
and the result is placed in dimensionless form:

1
+ % [F(x) + P(1 - x)]dx

L
:
4
=ty g / F(x)ax + ty o [ F(1 - x)ax + 1
0

The approximate expression for F (eq. (17)) is substituted, and the
two integrals on the right are carried out. Then 4y 1s substituted
from equation (9a), and the heat balance is arranged into the final
form:

-21
H 4 (1 - emet)
€t e g tg,i t ety s Z

l
+ (_12&_6)_/ q(x)[e-Zx + e-2(l—x)] dx = -eti,e (1 -:-21)

0]
1
" 1 4 [-ZX -2(1-x)
tegtteet 3 / [etw + (1 - e)H(t,, - tg):l e + e ]dx
0

(25)

Limiting Cases for Radiation or Convection Alone

In this section the two speclal cases are considered where either
convection or radiation becomes very small.

Pure-radiation solution. - When convection is negligible, the pure-
radiation solution can be found by following the procedure given in
reference 5 where the case for uniform heating was treated. From equa-
tion (82) when H - O the integral equation for g, is
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(26)

After q, 1s found, the wall temperature is obtained from eguation (9a)
with H = O:

L-calx) (27)

€ q

i

d
>
o] 4

+

From this relation it is noted by considering the black wall case
(e = 1) that q./T = t& L that is, qo/3 is equivalent to the black

wall temperature distribution. As shown in reference 5, the general
solution of equation (26) can be found by adding two more elementary
solutions having the following conditions: (1) Specified reservoir tem-
peratures with zero heating at the wall (g = 0) and (2) specified wall
beating with zero reservoir temperatures. The solution for part (1) is
given in reference 5 so part (2) is considered first. In equation (28)
the reservoir temperatures are set equal to zero, and the exponential
approximation (10) is used for K. Then the equation is differentiated
twice, and the original equation is subtracted four times. This leads
to the same result as equation (13) with H, tr,if and tr,e equal to

zZero:
q
q

! (28)
dx a

Equation (28) is integrated twice to give

q,
_:?-:—E—-—é— /f g(x)ax dx + Cyx + Cp (29)
q q q

The constants Cl and C2 have to be determined from the boundary
conditions obtained from the governing integral equation (11) with the
reservoir temperatures snd H equal to zero. Values for Cq and Co
will be determined later when a specific q(x) is considered.



}_l
[

To obtain the wall temperature distribution, equation (27) is com-
bined with the solution for part (1) teken from reference 5, which gives

4 4
¢ 95 1 - e qlx) 4 tr,i = tre (1
- = e AP s Rl RS Lo - -
ty Tl+ - = +tr’e+ — 5=+ 1 -x (30)
where q./q is given by equation (29).
Pure-convection solution. - For pure convection, all the heat added

at the wall is transferred to the gas. Hence, the mean gas temperature
at any axial position can be found by integrating the wall heat flux
from the entrance of the tube to that location:

2 X
nD” —
—Z—-upcp[ﬁg(x) - Tg,i] = 7D Jé. g{X)ax

The heat flux q(X) is substituted from equation (la), and the result
can be arranged in the dimensionless form for tg(x):

X

- St q(x)
belx) = tg i + 5 3

0

dx (31)

From the definition of the convective heat-transfer coefficient,
a(x) = nfT,(x) - 1,(x)]

which can be arranged in the dimensionless form

x) = tg(x) + & U (52)

Substituting tg(x) from equation (31) gives the desired wall tempera-
Ture expression:

g(x) + St f a{x)dx (33)
0



APPLICATION TO CHOPPED SINUSOIDAL HEAT FLUX
Tor the numerical examples carried out herein the heat flux 1s as-

sumed to have a chopped sinusoidal distribution that is often found in
nuclear-reasctor applications. In this case,

g{x) = C sin[f—%}%%l} (34a)

where (O is o constant. The integrated average ¢ is given by

— Ll +es ) 5 7(l + 8) =
q = C ———Zﬂ (,OS<——_—Z T 25) - COS[W] \D4b)

This can be substituted without difficulty into equation (18) and its
acsociated boundary conditions governing the combined radiation and
convection problem.

For pure convectlion the solution given by equation (33) becones

C . onlx +B)
g5t . R
H “

(1 + 25) L6s) w(x + &) L
+ St - cos TFg - €O T3 %5 (35)

For the pure-radiation solution the constants Cy and Co in egua-

tion (29) ere to be evaluated. Since the imposed wall heat flux 1is
symmetric about 1/2 and the reservoirs are both zero for the solution
in equation (29), this solution must be symmetric about 1/2; hence,

Cy = 0. To determine C, wuse the boundary condition found by evaluating

the integral equation (11) et x = O with H, t , and tr,e equal to

r,i
zero:
b o (8) 4,(0)
2(0) O emBE gr = —— (35)
Gl q q
0

When T(x) is substituted into equaticn (29) and the integration is
carried out,

2
9  C L+ 25 . on(x + 3) .
= E‘ 1+ L:(-—‘—" Sin -—Z—:‘TE_ + CZ (5/)



This is substituted into equation (38), and after integrating the result
can be solved for the constant Co. This constant 1s inserted back into
equation (37) to obtain qo/q) which is then substituted into equa-

tion (30) to obtain the final wall temperature distribution for pure
radiation:

4 4
. t., . =% z
glogs Lt mwe 1l N C L st v ER)e ) L nlx +B)
W r,e 1+ 2 z q € o 1+ 28
2(1 + 2 o +
(L +28) |, . _7® o2l o 2L Qa)
(6-27’ + l)‘ﬁf 1+ 26 1 + pate)

DIMENSIONLESS PARAMETERS

Before presenting some numerical examples, it is worthwhile to dis-
cuss the independent parameters that are involved and become familiar
with thelr range of numerical magnitudes:

{1) The parameter ! 1is the length-diameter ratio of the tube.
Cases are carried out in the range from 1 = 5 to 100. Most of the re-
sults are given for 1 = S0.

(2) The emissivity ¢ of the internal tube surface varies in the
range from 1.0 for the black condition to 0.0l, which is a lower limit
for some highly polished metals. In previous work (ref. 3) most of the
results were found to be fairly insensitive to ¢; and, hence, except
for cne example, the present solutions are carried out for the black
condition.

(3) Three of the parameters are dimensionless temperatures: t
BUSE a%d tr,e‘
’I‘(_o/@')l/"r and thus depends not only on T but on the average wall heat
Tlux. Some typleal values are:

g,1’
The dimensionless temperature variable is defined as

q) T) t’
Btu/(hr)(sq rt) | °R |dimensionless
0,000 20CO 0.84
10C, 000 3000 1.09
100,000 5000 1.81
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(4) The parameter St 1s the Stanton number 4h/ﬁbcp = 4lu/RePr.
For turbulent flow in a tube a commonly known correlation is
Nu = 0.023 ReO'BPrO‘4 so that St = 0.09Z Re=0:pp=0-6,  For gases at
eleveted tomperatures let Pr = 0.75 so S5t = O.lOQ/ReO'Z. Then some

values are:
[7 Re St

10?7 | 0.0173
10° .0109
10% . 00685

(3) The dimevsionless heat-transfer coefficient is given by

hq 1/4
— E) . Some typical values nre:
q i

1,11 q) H}
Btu/(hr)(sq £1)(°R) |Btu/(hr)(sq ft) | dimensionless
10 10° 0.28
40 10° 1.10
50 Zx10° .82
ix +
(8) The chopped sine wall heat flux has the form sin —%~:—§%l,

wiicll contains the paramcter » that can vary from zero to . Prac-
tical velues for nuclear reactors arc in = range from about O to 1/4.
The meximum veriation in g{x) is when & = C and will be the case
considered here. Results for other & will lie between those in the
present report and those in reference % where q was uniform along the
tube (8 > »).

DISCUSSION

With several independent parameters to consider, it is not feasible
to examine the wide variety of types of solutions in any detail. Several
typical examples are considered that will indicate the general behavior
of the wall and gas temperatures. For some ranges of parameters the
combined radiation and convection solutions (these solutions will be
referred to as simply the combined solutions) become very close to the
results for radiation or convection alone; hence, when these ranges are
defined, the solutions falling within them are easily determined from
the limiting cases.
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The first parameter to be discussed is the effect of tube length,
This 1s shown in figure Z where dimensionless wall and gas temperature
distributions sre given for bleck tubes with variocus lergths from 5 to
100 diemeters. The wall heat flux has a one-ralf sine wave variation;
that 1s, the parameter & 1is zero. Three groups of wall temperature
curves are given: The sclid curves arc the cambined convection and
radiation solutiones, the dotted curves are for convecticn slone, and
the dot-dash lines are for radistion alone. Typical values for St, H,
ard t, ; have been chosen. The reservoirs at the inlet and exit ends

of the tube have been assumed equal, respectively, to the inlet and exit
gas temperatures. As the limiting case of pure radiation is approached,

the convectlve heat transfer becomes very small and a2 neglipgible quantity

of heat 1s transferred to the gas so that Lg o = ‘g i+ Hence, for the
1

pure radiation sclutions, both the exit and inlet reservoir temperatures

are set equal to tg,i'

Consider first the three curves for a short tube, I = 5, The pure-
convection curve is generally much higher than the pure-radiation curve,
indicating that the wall heat flux can be dissipated more easily by
radiation to the cooler end reservoirs than by convection to the gas,
Since the radiation process is more efficient, the combined solution
follows the shape of the radiative distribution and is somewhat below
the radiation curve because of the additive convective effect. Since

q 1s zero at x = 0, it follows from thre relation q = Q(TW - Tg) that
the pure-convection curves begin at TL i- The combined solutions begin

at values higher than tg,i because radiation from the central part of
the tubc Imposes an additional heat load on the w=1l near the tube inlet.

For a long duct (1 = 100) the situation is completely differcnt.
Hlere the pure-radiation process leads to very high wall *’mpﬁlatures as
it 1s difficult for heat to be radisted from the central region of a
long tube to the end reservoirs. The energy can be carried away much
more easily by the flowing gas, and as a result the wall temperatures
f'or the combined solutions are close to the pure-convection curve. For
tubes longer than 100 diameters, and for the parameters 'n ilLU'P Z, the
combined solutions would be so close to the pure-convection limit that
this limit would serve as an adequate approximation.

The lower part of figure 2 shows the varistion of gas temperature
along the tube as compared with the pure convective case. With & sinus-
oidal heat flux variation along the tube, the gas temperature rises
slowly at first and then at a more rapid rate in the central 1 pert of the
tube where the heat addition reaches a maximum. For long tubes the gas
temperature begins to rise a little more rapidly than for ithe purc-
convection result because of the additional heat radisted to the wall
near the inlet. For short tubes the exit gas temperature is considerably
below the pure-convection value because of radiation losses to the inlet
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and exit reservoirs. It is important to note that, although the meximum
wall temperatures have been reduced compared with pure convection, the
exit gas temperatures have also been reduced. For a length of 00 diame-
ters the pesk temperature is decreased by 7 percent while the exit gas
temperature has been reduced by 4 percent. Thus, 1f the heat flux were
raised to yield the same exit gas temperature, the wall temperatures
would rise scomewhat, and the reduction in the maximum values would only
be about 5 percent.

Figure © has been restricted to black tubes, and the question
arises as to how the wall emissivity will influence the results. This
report is mainly interested in long tubes because of their grester
practical usc. In this case the solutions arec strorngly dominated by
comvection and In most instances are Tairly close to the convection
curves.  Reducing the emissivity of tne surface would be expected to de-
crease the radiastion exchanges and hence move the solutions toward the
convection curves. As a result, for emissivities less than 1, the com-
bined solutiong should fall between the bplack curve and the purc-
convection cese. This is 1llustrated in figure 3 for a tube 20 diameters
long. Even for a very small ¢ of 0.0l it is found that the solution
is still cleose to the black curve. This is due to the multiple reflec-
tions inside the tube that tend to make the tube sct like a black enclo-
sure. Due tc this insensitivity with ¢ and the fact that all the
curves for long tubes will lie in the relatively narrow rangc between
the black and pure-convection results, soluticns are glven on the re-
maining figures only for the black case. Additional iInformation oun the
influence of ¢ can be obtained by looking at the results for uniform
heating in reference 3.

Figure 4 illustrates the effect of changing the Stanton number.

For turbulent flow St 1is proportional o l/ReO'C so an increase in
St is caused by a decrease 1in Reynolds rnumber, which in turn would be
ceused by a decreased mass-Tlow rate. This increases the temperaturc
rise of the gas as it remains in the tube a longer time, and conse-
quently the wall temperatures are increased when St 1s made larger.
This cauges larger radiation losses so that the exit gas temperature
ratio is decreased as shown in the lower part of the figure. TFor St
smaller than 0.01, radiation effects are reduced, and the solutions
would approach the pure-convectlon limit more closely.

Figure & 1llustrates the influence of the dimensionless heat-
transefer coefficient H. When I = 0.8, the wall temperatures for con-
vection alone arc much lower than the purc-radiation curve, indicating
that the impoged well heat [lux can be removed much more easlly by con-
vection. Consequently, the solution is close to the pure-cconvection
curve. As H is decreased, the convection becomes less effcctlive, and
the solutions move toward thie pure-radiation result. For H = 0.2, the
solution is stroangly radiation dominated, and large quantities of encrgy



0

are lost from the ends of the tube as evidenced by the lower exit gns
temperature. For H greater than 0.8, the solulions could be predicted
qiitte well from the pure-convection case.

When the inlet gas temperature is changed, the temperature level of
the entire tube is altered. For low inlet temperatures the radiation
effects arc suppressed; and, as shown in figure &, when tg,i = 0.5, the
solution is close to the pure-convection result. For lower valuers of
radiat’on exchange can be neglected. When ¢ 3.0, however,

gyl g,1
radlation 1s appreciable and causes the wall temperature curve to be
more uniform than for cconvection alone.

In some applications the ends of the tube will be exposed to envi-
ronment temperatures other than the inlet or exit gas temperstures. For
example, a tube could be exhausting to the very low tempersture of outer
space, or one end of the tube could be exposed to a high tempcrature
such as a combustion chamber. A few of these effects are illustrated in
fTigure 7. TFigure 7{a) shows the effect of having an elevated reservoir
temperature at the exit end of the tube. The wall temperatures rnear the
exit are strongly Influenced by the heat radiated into the tube, and the
temperature at x = 1 1s raised close to the exit reservoir value.
Figure 7(bv) illustrates the result of raising both the inlet and exit
reservolr temperatures so heat is now radiated into both ends of the
tube. The pas temperatures in figure 7(b) are always above the pure-
convection solution becausc of the additional heat that ig radisted to
the walls and then transTerred to the gas. Figure 7 demonstrates the
very great effect that the enviromment temperatures can have on the tube
wall temperatures.

As indicated by the exit gas temperature, for most of the sample
cases gilven here there were net radistion losses from the end openings
of the tube. It is of interest to note how much of the imposed wall
heat flux 1s transferred Lo the gas in comparison with the individual
C losses. These guantities can be evaluated from the terms in the
heat balance equation (25), and results are given in table I, which
listu the heal radiated from each end of the tube and the heat convected
to the pgas, these quantities being normalized with respect to the total
Feat generation imposed at the tube wall. An interesting case at the
bottom of tabtle I 1s when the inlet reservoir is heated to tr,i 3.0,
as In tils instance the heat gain (a heat gain sppears as s negative
rumber) by the wall from incoming radiation is appreciable compared with
tie specified wall heating.
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CONCLUDING REMARKS

An analysis has been carried out to study combined radiation and
convection for transparent gas flowing in a tube with an arbitrary axial
distribution of imposed wall heat flux. The results were then special-
igzed for a sinusoidal heat flux variation, and several numerical examples
were computed to illustrate the effect of the independent parameters.
Most of the examples were carried out for tubes 50 diameters in length,
and only a few cases are shown for shorter tubes that are not as impor-
tant practically. The internal radiation tends to level cut the wall
temperature distribution in the tube because of heat being radiated axi-
ally from the hot to cooler regions. If the outside environment temper-
ature is high, large quantities of heat can be radiated into the tube
and cause large local increases in wall temperature.

There are a few final remarks that should be made with reference to
the analytical procedure. One of the most important assumptions was the
use of the separable kernel method which made it possible to convert the
governing integral equation into a differential equation. This method
was used previously in a paper dealing with specular reflections in a
uniformly hested tube (ref. 7) where it is compared with direct numerical
solutions of the integral equation. For tubes 20 diameters in length
the separable kernel gave wall temperatures about S percent too high,
whereas Tor short ducts the error was very small. This indicates that
for tubes 50 diameters long the pure-radiation curves are probably about
10 percent too high. However, for long tubes convection generally be-
comes more dominant than radiation so an error in the radiation terms is
less important. It appears that the separable kernel method will only
introduce an inaccuracy of a few percent in the combined convection and
radiation solutions considered herein.

Another important assumption was the use of a constant convective
heat-transfer coefficient. In the thermal entrance region which, for
turbulent flow, extends over approximately the first 10 diameters of the
tube, the heat-transfer coefficient will be higher than in the fully
developed region. This will cause a larger convection effect near the
entrance of the tube than was accounted for in the analysis; and, for the
first several diameters, the solutions should be closer to the pure-
convection curves. Since the heat-transfer coefficient 1s very high at
the tube entrance, the tube wall temperature at x =0 would be close
to the inlet gas temperature. For most of the present numerical examples
this effect is not too significant because the imposed sinusoidal heating
decreases to zero at the tube entrance. With only a small heat input
near the tube entrance, the wall temperatures are already close to the
gas temperature; and, hence, the magnitude of the heat-transfer coeffi-
cient is not as important in this reglon.

Lewls Research Center
National Aeronautics and Spece Administration
Cleveland, Chio, July 13, 1962
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APPENDIX - SYMBOLS
surface area
specific hest of fluid

tube diameter

radiation configuration factor from a differential ring element

on tube wall to circular opening at tube end

)1/4

h
dimensionless heat-transfer ccefficient, EE(%

convective heat-transfer coefficient

radiation configuration factor between differential ring elements

on inside of tube wall
thermal conductivity of gas
length of tube
dimensionless length, L/D
Nusselt number, hD/k
Prandtl number, cpu/k
hent added per unit area at tube wall
integrated average g
total incoming radiaticn to surface per unit area
total outgoing radistion from surface per unit area
Reynolds number, GDp/u
tanton number, éh/ﬁpcp = éNu/RePr
absolute temperature
dimensionless absolute temperature, (0/@)1/4T
gas velocity

mean gas veloclty
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exial length coordinate measured from tube entrance

dimensionless coordinate X/D

linear extrapolntion distance in chiepped sine heat flux distributlon
emissivity of surface

visceoslity of gas

length coordinate

dimensionless length, =/D

density of gas (except in eq. (8) where p is reflectivity)

Stefan-Beltzmann constant

Subscriple:

e

exit of tube

gas

inlet of tube (except in qy)

reservolr or enviromment &t end of tube

internsl surface of tube wall
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